Non-SUSY Exotic Searches at the Tevatron

Qiuguang Liu (Purdue Univ.) on behalf of the CDF and Dø collaborations

Outline

- Tevatron, CDF and DØ
- Standard Model and it's Extensions
- Exotics Searches at Tevatron (see L. Bellantoni's talk for the SUSY searches)
- Conclusion

SUSY 2011

at the "high rise"

Accelerator	Highest Energy	
Cockcroft Walton	750 KeV	
Linac	400 MeV	
Booster	8 GeV	
Main Injector	150 GeV	
Tevatron ~ 4 miles	980 GeV	

Anti-proton

Two General-purpose Detectors

CDF 60 institutes, 513 members

DØ

72 institutes, 456 members

- **Tracking system**: the silicon detectors for vertex precision, the wire/fiber chamber to measure the charged particle momentum.
- Calorimeters: measure the energy of electrons and photons, and sample the energy of hadrons.
- Muon detector: improve the muon ID.
- Sophisticated systems behind the curtain: Electronics, Trigger Systems, DAQ,
 Offline Simulation and Reconstruction, and many others.

Collider Performance

The results showing in this talk are using data about 5~6 fb⁻¹

Extension of the Standard Model

Grand Unification?

Connections? Supersymmetry?

Collect all 6!

REALITY
STEW

pi⁺⁻, pi⁰, eta, f_0, a_0, ... (Lig

K⁺⁻, K⁰, ..., K^{*}, ... (Strange)

D⁺⁻, D⁰, D^{*}, ... (Charmed)

D_s, D_s*, ... (Charmed, strar

B⁺⁻, B⁰, ..., B^{*} (Bottom)

B_s (Bottom, strange)

B_c (Bottom, charmed)

eta_c, J/psi, ... chi_c, ... (c cba

Upsilon, chi_b ... (b bbar)

Lambda_b⁰ (Bottom), b-baryo

Lambda_c, Sigma_c, Xi_c, On

Omega-, Omega resonances

Xi⁰, Xi⁻, Xi resonances

Sigma⁺, ..., Sigma resonances

Lambda, Lambda resonances

Delta resonances

b' u' y resonances

Extra dimension?

Tevatron Exotics Searches

- Many extensions of Standard Model are proposed.
- New particles are predicted.
- A measurable new particle show itself as elementary particles after decay: e, μ , τ , γ , jets (pion, kaon, n, p ...), and neutrino (missing transverse energy).
- If a model doesn't predict anything measurable, we're sorry ...

Non-SUSY Exotics

- Leptoquark
- RS Graviton G
- SSM W'
- 4th gen. neutrino
- T', dark matter
- new resonance

Also see the SUSY talk given by L. Bellantoni

Background: Standard Model Productions

- WW/WZ/ZZ: Pythia (CDF & DØ)
- Single top: MadEvent+Pythia (CDF), COMPHEP(DØ)
- Top pair: Pythia (CDF), Alpgen+Pythia (DØ)
- W/Z + jets: Alpgen+Pythia(CDF & DØ)
- QCD multijet: data-driven

The cross-section is always using the one up to the highest available order

Signal: exotic particles.

mostly Pythia.

Leptoquarks

Leptoquarks (LQ) are predicted to fundamentally couple the leptons and quarks, in each generation.

$$q + \overline{q} \rightarrow LQ + \overline{LQ}$$
 $g + g \rightarrow LQ + \overline{LQ}$

Search for the 1st generation scalar leptoquarks

 $LQ\overline{LQ}
ightarrow eq
u_eq'$

W+jets is the largest background.

$$W
ightarrow e
u,\,\, m_T^{e
u}\sim [70,85]\,\, GeV$$

$$S_T = \sum E_{T_{jet}} + E_{T_I} + \cancel{E}_T$$

arXiv:1107.1849 [hep-ex]

Search for the 1st generation scalar leptoquarks

 $LQ\overline{LQ}
ightarrow eq
u_eq'$

Scanning over samples with m_{LQ} 200~360 GeV. A lower limit of LQ mass is set at 326 GeV (β =0.5).

arXiv:1107.1849 [hep-ex]

WW or WZ resonance

Sequential standard model W' Randall-Sundrum model graviton G

$$par{p}
ightarrow W'
ightarrow WZ\;(I
u jj,\; jjII,\; I
u II) \ par{p}
ightarrow G
ightarrow W^+W^-\;(I
u jj)$$

Two new searches with ≥ 1 jet and 1- or 2-lepton (5.4 fb⁻¹) Combined with 3-lepton search (4.1 fb⁻¹)

Process	Single lepton sample	Dilepton sample
$\overline{Z+\mathrm{jets}}$	3.6 ± 0.2	7.9 ± 0.8
W+jets	124.5 ± 20.3	< 0.01
Top	22.9 ± 2.5	< 0.01
Multijet	4.6 ± 0.3	< 0.01
Diboson	27.6 ± 1.4	0.8 ± 0.1
Background sum	183.2 ± 24.5	8.7 ± 0.8
Data	174	8

Phys. Rev. Lett. 107, 011801 (2011)

WW or WZ resonance

Sequential standard model W' Randall-Sundrum model graviton G

$$par{p}
ightarrow W'
ightarrow WZ~(I
u jj,~jjII,~I
u II) \ par{p}
ightarrow G
ightarrow W^+W^-~(I
u jj)$$

Exclude W' in the mass range [180, 690] GeV Exclude RS graviton in [300, 754] GeV $(k/\overline{M}_{pl}=0.1)$

Phys. Rev. Lett. 107, 011801 (2011)

5.7 fb⁻¹

Search for Randall-Sundrum Graviton in µµ channel

Combined with the searches in ee (5.7 fb⁻¹) and YY (5.4 fb⁻¹) channels

The RS graviton mass limit for the coupling $k/\overline{M}_{pl}=0.1$ is 1111 GeV.

CDF public note 10479

D0: arXiv: 1008.2023 [hep-ex]

High Mass Resonance Decaying into $ZZ_{ZZ \rightarrow l^+l^-l^+l^-}$

 $ZZ \rightarrow I^+I^-\nu\nu$

 $ZZ
ightarrow I^+I^-jj$

 $\rightarrow ZZ$?

In the 4-lepton channel, 4 events observed with m_{ZZ} ~**327 GeV** (eeee, eeμμ, 2μμμμ).

The total expected SM ZZ is 5.8, and less than 25% (1.5) of them have $m_{ZZ} > 300$ GeV.

The chance for 4 SM ZZ to cluster around 327 GeV is tiny $(\sim 10^{-4})$.

High Mass Resonance Decaying into ZZ ZZ → I+I-I+I-

400 500 600 700 No excess around the expected high mass resonance M_{vis} (GeV/c²)

High Mass Resonance Decaying into ZZ $ZZ \rightarrow I^+I^-I^+I^-$

$$ZZ \rightarrow I^+I^-ii$$

In 4-lepton channel, at $m_{ZZ} = 325$ GeV the expected upper limit is **0.7 pb**, and the observed is **1.9 pb**.

In Ilvv and Iljj channel, the observed limits are consistent with the Standard Model expected.

Story is not finished yet ...

CDF public note 10603

D0: PRD 84. 011103(R) (2011)

Search for YY events with large MET

Lightest KK particle in UED model

 $\gamma^* o G \gamma$

Update the previous analysis (1.1fb⁻¹)

Improved photon ID utilizing neural network technique

• UED: compactification radius $R_c^{-1} < 477$ GeV

Phys. Rev. Lett. 105, 221802 (2010)

Search for 4th gen. neutrino in ZZ+MET

$$p\bar{p} o Z/\gamma^* o N_2N_2 o N_1ZN_1Z o I^+I^-q\bar{q} +
ot\!\!\!/ E_T$$

Searches for 4th gen. quarks t', b' have been performed at Tevatron.

Not very much in searching for 4th gen. leptons.

Two eigenstates N1, N2 for the neutrino.

 $N_2 \rightarrow N_1 Z$ dominates in most case.

SM bkgs are either only having one Z or lacking of true MET

CDF public note 10539

Top Pair: all hadronic decay, lack of true MET

QCD: fake MET, small METsig

Exclude the fourth generation exotic quarks t' up to 400 GeV for $m_X < 70$ GeV arXiv:1107.3574

CDF lepton analysis: PRL 106, 191801 (2011)

Dijet Resonance in W+jets

Updated to 7.3 fb⁻¹, the significance of the bump is 4.76

Dø's result doesn't favor such a resonance.

Task forces are commanded between CDF and DØ, and internally in these collaborations.

Conclusion

- Many new-physics signatures are explored both at CDF and DØ.
 Only very recent results are covered in this talk.
- Both experiments are expecting ~11 fb⁻¹ data being finally acquired, which is twice as much the data explored so far. Stay tuned ...
- LHC is delivering many interesting exotic results, wish to hear more in SUSY 2011.
- For more exotic searches at Tevatron:
 - http://www-d0.fnal.gov/Run2Physics/np/
 - http://www-cdf.fnal.gov/physics/exotic/

A very emotional moment

- Many people have worked on/with CDF and DØ, and loved them.
- But the day just comes.
- Thanks, to the people, and to the machines!

Still hard to have a broad perspective of physics